RESTORE FIRE TO FIRE-ADAPTED ECOSYSTEMS

OBJECTIVE

Reduce the risk of severe fire.

DESCRIPTION

Long-term fire suppression leads to shifts in forest structure and composition, which may disproportionately favour a smaller number of species and reduce biodiversity. Restoring fire regimes that attempt to mimic natural disturbance in fire-adapted systems can enhance regeneration and encourage stronger competition by fire-dependent and fire-tolerant species. Repeated low-intensity fire in some forest types, such as red pine and oak, can emulate natural processes to foster more complex stand structures while reducing risk of severe fire. An example of an adaptation tactic under this approach is to use prescribed fire to reduce ladder fuels and lower risk of large and severe wildfires in areas that are expected to have increased fire risk as a result of climate change.

EXPECTED RESULTS

Preserved biological diversity.

RESULT INDICATORS

Number of species preserved

INVOLVED ACTORS

Firemen and ecologists.

EXPECTED TIMELINE FOR ACTION

• Short term (1-4 years)

BEST PRACTICES

- Klamath and Salmon Rivers California USA
- USA
- Asia, Africa and Argentina

CRITICALITIES

Risk of uncontrolled fires.

SCOPE OF THE ACTION

Adaptation

TYPE OF PROPOSED ACTIONS

• Green

SECTOR OF ACTION

- Agriculture / Forests / Land use
- Biodiversity / Conservation of ecosystems

CLIMATE IMPACTS

- Change or loss of biodiversity
- Fires

IMPLEMENTATION SCALE

- Province
- Region / Country

SOURCE

https://www.nrs.fs.fed.us/

